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Crossing relations for helicity amplitudes for particles of arbitrary spin are 
formulated without recourse to the introduction of scalar amplitudes. The 
basic assumption is that the amplitudes are simply related by analytic con- 
tinuation; the path of continuation is carefully specified. The relations are 
given a simple geometrical interpretation. The relation between TN + wN 
and ?rr + N?? obtained in this way agrees with that obtained by direct elimina- 
tion of scalar amplitudes. 

I. INTRODUCTION 

The most common applications of crossing relations involve particles of spin 0 
or at most 3s. The customary Dirac formalism allows one to express the reaction 
amplitude in terms of so-called scalar amplitudes (“A” and “B” in the case of 
x - N scattering) and the crossing-relation then simply states that analytic 
continuation of a scalar amplitude from the physical region of a channel to that 
of a “crossed” channel yields the corresponding scalar amplitude in the crossed 
channel. The introduction of scalar amplitudes is not a simple matter in the 
general case, so that it would be technically advantageous’ to formulate the 
crossing relations in terms of some other amplitudes, which are more easily 
generalized, for example helicity amplitudes (1, 2). 

A crossing relation for helicity amplitudes for a simple case, such as ?rN scat- 
tering versus NN annihilation into two pions, can, of course, be obtained in- 
directly by elimination of the scalar amplitudes A and B from the equations 
connecting A and B to the helicity amplitudes FM and Gh,, for the two crossed 
reactions. But the relation obtained is not very transparent at first sight. How 
can it be generalized? 

Recently we arrived at a very simple geometrical interpretation of these 
relations, which suggests an obvious generalization. Essentially the same interpre- 
tation has been arrived at independently and apparently somewhat earlier by 
M. S. Marinov and V. I. Roginskii (3) and by Ya. A. Smorodinsky (4). The 
results of these authors, however, are only similar to but not identical with ours. 

* Work performed under the auspices of the U. S. Atomic Energy Commission. 
1 We are indebted to Prof. M. Goldberger for repeatedly drawing our attention to this 

question. 
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In particular, the formulas derived by these authors do not seem to agree with 
those obtained by the elementary “indirect” method for TN scattering, and 
must therefore be incorrect. We believe that this is due to certain complications 
arising from analytic continuation, complications which are not discussed in 
either of the above-mentioned papers. We hope, therefore, that the following 
remarks will contribute to the further elucidation of this problem. 

II. AN EXAMPLE: ?rN SCATTERING 

Let us first briefly recall the results of the calculation via the scalar ampli- 
tudes. The ?rN scattering amplitude is given by 

The notation is standard (5)) except’ that the usual B is replaced by B/p. The 
helicity amplitudes G++ and G+ , say, are then obtained by an appropriate 
choice of the Dirac spinors u( pl) and u( pz) . The formulas of this section are 
based on the phase conventions of ref. 1. Note that according to Eq. ( 13) of (1) , 
there is a factor ( - 1 )82-x2 in the definition of the helicity state for “particle 2.” 
In the following equations the pion in both the initial and final state is taken as 
“particle 2,” so that the factor is avoided. One has, ignoring an irrelevant over- 
all phase factor, 

A + G++=sin($)(~A+~B), (2) 

where k and 0, are c.m. momentum and scattering angle, E = (& + k2)“’ and 
w = (CL’ + k2)1’2 are cm. energies of nucleon and meson respectively. For the 
relation of these variables to the Mandelstam variables s, t, u (or S) and related 
notations we refer the reader to the papers of W. R. Frazer and ,J. R. Fulco (6). 
With the abbreviation 

x2 = [s - (772 + p)2][s - (112 - p)2] (3) 

we have 

k2 = s2/4s; sin (es/a) = ( -s~)“~/S (4) 

cos (es/z> = (X2 + s~)*‘~/S = [(m” - ~1~)~ - SU]“~/S (5) 

e = (s + m2 - ~~)/(4s)l’~; w = (s - m2 + p2)/(4sy2. (6) 

These formulas are to be used in the physical region for the s-channel (nN 
scattering). In this region the square roots in (4)-(6) are all positive by defi- 
nition. In the t-channel ( ?T?T --+ NN) the helicity amplitudes are given (6) by 
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F ++ = -WmM + (q/P) lose B, F+- = (Eq/mF) case B (7) 

where : 

p = (JQ - m2)1’2, q = (tit - p2y2, cos e = (s - u)/4pq, (8) 

and the functions A (s, t), B( s, t) in the t-channel region are analytic continu- 
ations of the corresponding functions in the s-channel region. In these equations, 
the nucleon in the final state is taken as “particle 2.” If A and B have the kind 
of singularities that are postulated in the Mandelstam representation, the 
analytic continuation has to go from a point, say, s = si + ie, t = ti - ic, where 
E is infinitesimal and positive, si > (m + P)~, ti < 0, Siui < (m” - ~1~)~ to a 
point s = sf - ie, t = tf + ir where sf < 0 and sfuf > (m” - p2)2. In these 
equations the variable u is, of course, u = 2(m2 + p2) - s - t. If we assume, 
for the sake of simplicity, that u stays real along the trajectory, then in order to 
reverse the sign of the imaginary parts of s and t, the trajectory must go through 
a point of the real s, t-plane. If this is the only real point of the trajectory, and 
if the real point lies within the triangle defined by the inequalities: 

s < Cm + ccJ2, u < Cm + ~1)~) t < 4#u2, (9) 

then we will have insured that the endpoint is still on the “first sheet” where 
A and B are given by the Mandelstam formulae and have the correct values for 
the t-channel. 

The coefficients of A and B in Eq. (2) have certain singularities (branch- 
singularities), namely, as can beseen from Eqs. (3)-(6)) at s = 0, s = (m f P)~, 
t = 0, and su = (m” - c~~)~. The trajectory should, of course, avoid these singu- 
larities. We may assume that the imaginary part of s( - t) remains small through- 
out so that the trajectory may be specified for our purposes by drawing a line in 
the s, t-plane, indicating by a cross the point where the trajectory crosses the 
real s, t plane. The lines su = (m” - ~1~)~) s = (m - ,u)~, and t = 0 divide the 
triangle (9) into five pieces, see Fig. 1, and depending on where the crossing- 
point lies, one will get different determinations of the coefficients in Eq. (2) at the 
final point in the t-channel. Since an over-all change in sign of G++ and G+ is 
unimportant, we have to distinguish only two cases: if the crossing point lies 
within the hyperbolic segment delimited by t = 0 and su = (m’ - ~1~)~) then 
the final values of cos (8,/Z) and s-l’2 sin (8,/Z) are pure imaginary and of the 
same sign. In all other cases, they are pure imaginary and of opposite sign. Thus 
if we adopt the first alternative, we have 

cos (0,/Z) = -2ipq sin e/L?, e-l” sin (8,/Z) = ZiE/S, (10) 

where 2E = t”’ is the total energy in the c.m. system. The minus sign in the 
expression for cos (0,/Z) is explained in the Appendix. After introducing these 
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FIG. 1. The s, t plane for ?miV 4 TN and *T + Nfl (drawn form = 4/r) 

values into Eq. (2)) we may eliminate A and B from (2) and (7), obtaining 

G ++ = (2i/fi)[mq sin 9F ++ + E(p - Y ~0s @F+-I, 
(11) 

G+- = (ails) [E(p - y cos B)F++ - mq sin OF+-], 

where, as pointed out before, it is irrelevant which of the two determinations 
for the square root of (3) is used, provided it is the same in the two equations.’ 

It is easy to verify the identity 

(my sin 0)” + P(p - y cos 0)” = $&S” (12) 

so that, apart from the uninteresting factor i, the transformation matrix between 
the two sets of helicity amplitudes is an orthogonal matrix. But the meaning of 
this transformation is not immediately apparent. 

Owing to the orthogonal nature of the transformation we are, however, 
tempted to write Eq. (ll), disregarding the factor i, in the form 

G++ = sin xF++ + cos xF+- , G+- = cos xF++ - sin xF+ (11’) 

where x is determined by 

2 The opposite sign for S in the two equations corresponds, however, to the alternative 
choice of the crossing point! 
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tan x = mq sin 19 
E(p - q) cos e * 

In order to interpret this formula, we must re-examine carefully the process of 
analytic continuation. 

III. GEOMETRICAL INTERPRETATION 

In the customary presentation of the crossing relations one rewrites the con- 
servation law for IAN scattering 

in the form 

41 + Pl = qz + p2 (14) 

a--Q2= -m+p2 (15) 

and reinterprets -q2 and --p as initial four-momentum of a pion and final four- 
momentum of an antinucleon respectively. It is clear that in this interpretation 
the values of the four-momenta are not the SUER in Eqs. (14) and ( 15)) since q2 
and p, are positive timelike in Eq. (14) and negative timelike in Eq. (15). In 
fact, the values of Eq. (14) correspond to the initial point of the trajectory of 
Fig. 1, those of (1.5) to the final point. Moreover one sees that also the values of 
ql and p2 have to vary along the trajectory since 

u = (q1 - p2j2 (16) 

cannot remain constant. However, this variation of ql and p2 is often disregarded, 
since in the end the two four-vectors revert to the real positive timelike mass 
shell. In fact, if the initial point of the trajectory of Fig. 1 lies in the u < 0 
part of the physical region, we may indeed assume that the final values of q1 and 
p are identical with the initial ones. Henceforward we shall make this assumption 
for simplicity. 

Thus in the latter case indicating by primes the values of ql , . . . etc. at the 
end of the trajectory, we may write 

P11 = Pl, p2’=p2, q2’= -Q2, pl’ = --p, ) (17) 

where qlQ2 are the pion momenta in the initial state, and p2Pl are the nucleon 
and antinucleon momenta in the final state of the reaction in the t-channel. It 
should be noted that P, and Q2 must be different from pl and q2 in Eq. (14). In 
this respect the usual notation is apt to lead to confusion. 

We may clearly assume that at every stage of the analytic continuation the 
vectors pl , p2 , q1 , q2 (whether real or complex) lie in the zx plane, since this 
gives us sufficient freedom to vary s and t at will. This assumption avoids phase 
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FIG. 2. Velocity space diagram. The ends of the segments p, and pl represent the velocity 

points of p, and q1 ; X represents the velocity point of the c.m. of pl and q1 ; 0 is an arbitrary 
point. The arrows indicate the directions in which the spin components are measured. 

factors connected with the azimuthal variable (P,~ and furthermore it means 
that the y axis is not affected in any of the Lorentz transformations we shall 
encounter in the following discussion. 

Let us now introduce, in addition to the customary helicity amplitudes G,i( s, t) 
so far employed, the notion of “generalized” helicity amplitudes G,x( ~2~2 ; plq,) 
by which we mean matrix elements of the scattering matrix T between helicity 
states satisfying condition (14) but not subject to the c.m. condition: pl + ql = 0. 
The phases of the nucleon helicity states are defined by Eq. (6) of (I), with 
4 = 0 and &J unrestricted. The discontinuity at the “south pole” causes no 
trouble since the state obtained with fI = ?r is simply ( -l)2S times the state 
with 0 = -?r, independent of the helicity. Let @ be the velocity of the center of 
mass 

e = (PI + ql)/(Q + 4 (18) 

where cl = (m” + ~1~)“‘, WI = (p2 + q12)1’2, and denote by la’ the Lorentz trans- 
formation (in the zz-plane) which transforms the c.m. to rest, so that 
pl = Zaplo, ql = E,TQ~‘, where p,‘q~’ is an initial state satisfying the cm. condition. 
Then according to the transformation law of helicity states4 

&3 I PA) = F ~5~X(Pl ; G) / PlX’) (19) 

where U is a spin-rotation matrix corresponding to a rotation about the y-axis. 
The rotation angle is indicated in the diagram in velocity space; see Fig. 2. 
Besides the velocity points corresponding to pl and q1 , the diagram has a point 
representing the velocity of the c.m. (a cross) and a point 0 representing the 
velocity of the arbitrary system, in which the momenta are pl and q1 . From 
Eq. (19) and the Lorentz invariance of the T-matrix one easily derives the con- 
nection 

3 See, for example, ref. 1. 
4 See, for example, ref. 8, especially the Appendix. 
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A similar formula holds for an arbitrary Lorentz transformation I, except that 
in this case we would have on the left-hand side again a generalized amplitude 
for the values l-‘p, , . . . etc. of the four-momenta. 

We may perform the analytic continuations of G,h(s, t) by continuing each 
of the three factors on the right hand side of Eq. (20). Let us assume, for the 
sake of simplicity, that the values (17) at the end of the trajectory satisfy the 
c.m. condition for the crossed reaction 

ql + Q2 = PI + p2 = 0. (21) 

It then turns out that the end-value of the generalized helicity amplitude 
G,t~r(p2q2 ; plpl) coincides up to a phase factor (see Eq. (31)) with a helicity 
amplitude F for the crossed reaction. Such a relationship has in fact been con- 
jectured by other authors (5,7) with the difference that here, contrary to their 
results, the helicity does not change sign in the crossing process. Finally, the spin- 
rotation matrices U, or rather their analytic continuation, give rise to the 
orthogonal transformation Eq. (11)) as has also been pointed out by Ya. Smoro- 
dinsky (4) and by Marinov and Roginskii (3). 

Let us first examine the behavior of the generalized amplitude G,,,(pZpZ ; prq,) . 
We can do this in two ways. To begin with, we may say that G is given by Eq. (1) 
when the spinors are chosen to be “helicity-spinors” u,(pz) and uh(pI). This 
means that, for example, u(pl) must satisfy, in addition to the Dirac equation 
(6yp1 + m)u(pl) = 0 also a helicity condition5 

where X = +>5. 

d*Plux(pJ = 2X(PlY2%(P,) (22) 

Since we have made the customary assumption that there is no problem in 
continuing the matrix T, Eq. (1) along a path such as that of Fig. 1, the whole 
question reduces to the behavior of the helicity spinors. Since p2 reverts to the 
positive real (i.e., p2 real) mass shell in the end, it is not hard to see that the 
helicity p remains unchanged in the process. The case of pl requires more care. 
At the end of the process, u will, of course, become a negative energy spinor, 
v(Pl) satisfying a Dirac equation (irP, - m)v(P1) = 0. If we assume, more- 
over, that along the trajectory ~1’ never becomes zero, then since Eq. (22) is 
always satisfied by analytic continuation, it follows that the final v(P1) must 
satisfy 

6Equation (22) does not, of course, determine the phase and normalization of UX(~I). 
We assume that the latter are chosen according to the convention explained above when 
pl is real. They are then determined for the other values by analytic continuation. 
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-d.PIvx(f’I) = 2X(P,‘)““v4P1) (22’) 

where the sign of the square-root on the right hand side is determined un- 
ambiguously by continuity along the path. As we shall see presently, the sign of 
the square-root is determined to be positive, whereupon it follows that the 
antinucleon state described by VA has helicity +X, as one can see immediately by 
examining the charge-conjugate spinor Ca (or by the more elementary hole- 
theory argument : a missing particle of spin - X in the PI-direction corresponds to 
an antiparticle of spin +X in the same direction). Thus the helicity does not 
change sign in the analytic continuaticn. 

The crux of the argument, it will be seen, is the behavior of the square-root 
of PI*. This is not trivial, since the vector PI becomes complex along the path. 
Let, however, cl be the time component of pl at any point of the trajectory so 
that (Pt)*” is the end value of 

2 l/2 ( e12 - ,nL ) . (23) 

The whole question hinges on the path of the representative point for e1 in the 
complex El-plane, Fig. 3. Now assume for simplicity that ~1 and p2 are exactly 
real at the endpoint. For the initial value of pl we write instead pl + ~TJ where 
pl and rl are real, and 12 = (70 , n) is infinitesimal. Thus p? = vn2 and pl. 9 = 0. 
Calculating in the c.m. system for pl + pl , i.e., assuming pl = -ql , the condi- 
tion for s = (pl + iv + q1)2 to have a positive imaginary part is 

0 < v-q1 = VOWI - n.ql = wwl + n.pl = rlo(ul + ~1). 

This implies 70 > 0, i.e., the initial value of cl is cl + iTO ; it has a small positive 
imaginary part. 

Similarly the condition that t = (p, - p2)’ has a small positive imaginary part 
at the endpoint of the trajectory implies that the end-value of cl has a negative 
imaginary part. Thus the endpoints are as indicated in Fig. 3, and the remaining 
question is whether the cl-trajectory cuts the real axis between --~a and +m 
(as indicated in the figure) or not. If it does, the end-value of (23) is positive, 
as we have assumed. Now this can certainly be arranged, if we assume that the 
time components of the four-vectors p, and q2 are everywhere complex along 
the trajectory except at the crossing point. Since the latter is inside the triangle 

t, -PLANE 

FIG. 3. The complex El-plane 
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(19) we may assume that at this point the four-vectors pl , . . . , ~2 are 

all “Euclidean” (i.e., have a real time component and a pure imaginary space I 
component). In this case the nucleon time components e, and the meson time 
components w satisfy the inequalities 

-m<E<.m, .-p<w<+p, (24) 

so that all the energy trajectories satisfy the requirements (for mesons this 
would be of interest if they also had a spin). 

In conclusion, the discussion above shows that, owing to the large number of 
variables, when analytic continuation in the four-momenta is involved, the 
answer is by no means unique,6 but if one chooses the convention which can be 
stated in general in the most simple and natural way, then the result is the one 
we have indicated. 

If one wishes to extend this conclusion to general spins and masses, one can 
resort to the second method we mentioned, namely, one generalizes (20) to an 
arbitrary Lorentz transformation 1: 

G,w(Z-1p21-‘p2 ; Z-lp,Z-‘q,) = g U,&-‘; p,)G,x(pzpz ; plqd &(PI ; 0 (25) 

(if all four particles have spins, there will be two more indices to G, and two more 
U matrices in the product). One then keeps 1 fixed, and continues analytically 
to the values (17). This requires analytic continuation of U~,t(pl ; I) to 
Uxxt ( -P, ; I). Let us write 

U(Pi 0 = w-‘(PPw’P)l (261 

where 9 = a,‘“’ is the representation of the rotation group pertaining to the spin 
s of the particle. We have to write explicitly the components of the Lorentz 
transformations h(p) and h(p’) as functions of the four components of p and 
p‘ = I-‘p, where h(p) is defined according to the helicity convention 

h(p) = ~+,s,-d~) (27) 

where 8, 4 are the polar angles of p; i.e. h(p) is an ordinary Lorentz transforma- 
tion of velocity 1 p I/p0 in the z-direction followed by rotations through Euler 
angles -4, 0, I$. One then performs the analytic continuation. In order to deter- 
mine the transformation properties of the continuation of G,A , it is sufficient to 
consider small Z in Eq. (25). In particular, we assume that plo and, since Z is 
small, also (IpI) cross the real axis between +m and -m as indicated in Fig. 3. 
With this assumption, it is straightforward to show that 

( -l)x-A’uxx~(-P; 1) = uvA(rl; P) = U&(P; 2) = lJ&(P; I). (28) 

6 We are indebted to Prof. R. Cutkosky for a remark in this connection. 
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The appearance of the complex conjugate is to be expected since the particle 
changes side of the reactions. 

Equation (25) now becomes, for the end-values (17), 

G,w (Z-‘pz , -l-‘&z ; -z-‘P, ) z-‘q,) = $ ( - 1)x-x’ U,,,( 1-l; p2) 

!29) 
x UX&; P,)G,x(p,, -Qz ; --PI, ad. 

This transformation law is to be compared with that for the generalized helicity 
amplitude Fah( pP1 ; q1Q2). In order that this coincides with F,A( s, t) as defined 
in (7) when q, + Qz = 0, the helicity state / pz , p ) must be defined with the 
additional factor (- l)l”-“. The transformation law is then 

Fpx(l-‘p, , I-‘P, ; Z-‘q, , Z-‘&z) = & (-l)“‘-‘F,&p, , PI ; ql , Q2) 

!30) 
x U,&‘; pz) &A(C m  

where the factor (-1)“-” results from defining the nucleon helicity state with 
the factor ( - 1) “‘-‘. Thus, if there is a direct connection between F and G, it 
must be (apart from an over-all phase factor) 

G,A( ~2 > -Q2 ; -P, , 41) = (-l)“-“F,i(p,P1 ; ql&d. (31) 

(Note that if the antinucleon had been taken as “particle 2” there would be no 
factor ( -l)‘-A in Eq. (31).) Notice also that no reversal of the sign of the 
helicity occurs; this circumstance is again strictly connected with a path such as 
indicated in Fig. 3. If we now specialize to a c.m. system q1 + Q2 = 0, the right 
hand side becomes ( - l)P’-xF,~(~, t). 

We now come to the final step, the analytic continuation of the Ufactors in 
Eq. (20)) which is different from the preceding case, because the Lorentz trans- 
formation Zp also varies along the path. We notice in fact that, along the path, 
Is becomes a complex Lorentz transformation and at the end it becomes Zgt , 
where the velocity 

0’ = Ql - Pl 
q10 - PI0 

(32) 

may be greater than unity (i.e., than the velocity of light) so that 1~~ may also 
be complex. In particular, when the transformation is from an annihilation c.m. 
to an elastic scattering cm., 0’ is infinite. Since the vectors are assumed to remain 
in the x z plane, U(p, ; Z,3) and U( la’; pz) can each be expressed in terms of a 
single angle, ~1 and x2 , respectively. For the continuation process, we choose 
as the arbitrary point 0 of Fig. 2 the velocity point of the center of mass of p2 , 
PI or ql , Q2 reached at the end of the continuation. Let C denote the velocity 
point of the center of mass of pl , q1 or p2 , q2 . The angles may be determined 
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b \ 

FIG. 4a. The velocity space diagram for an arbitrary point along the path of continuation. 
C represents the cm. of pl and ~1 at this point; 0 represents the cm. of PI and p2 in the 
final configuration. b. The velocity space diagram for the final configuration. 

from the cosine theorem (2’) applied to the triangles OCp, and OCpz respectively; 
see Fig. 4a. 

cos Xl = 
cash pcl cash pal - cash pot 

sinh pcl sinh pal ’ 
(33) 

cos x2 = 
cash pcz cash ~02 - cash pot 

sinh pc2 sinh ~02 ’ 

where tanh pcl is the absolute velocity of pl with respect to C, etc. For an arbi- 
trary point on the path of continuation and using different masses for pl and p2 , 
pl and q2 for the sake of generality 

1.11~1 PIO - %PIO + ql0) ml2 
cosxl = (s + m12 -&(p:o _ m12)l/2 ’ 

142~) ~20 - 2Cp20 + q20) m22 
cosx2 = (s + m22 -s,(p;o _ m22)l/2 

(34) 

’ 

evaluated in the rest system of 0. Here ~‘3’~~ = [s - (ml - d21[s - (ml + 1.4~1, 
etc. At the end of the specified path, one obtains the positive determinations of 
St and (pzo - m?)1’2. Thus there are no new problems in the continuation of 
cos xi . We must next determine how sin xi continues. Consider the initial con- 
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figuration when 0 and C are connected by a real Lorentz transformation. Let 
0 denote the angle from --p1 to ql in 0. Further, define crl to be the angle from 
p1 + q1 to p1 in 0. (In order to determine signs correctly, it is essential to pay 
attention to the directions of the angles. For example, 8 is positive if a positive 
rotation about the y-axis takes -pl parallel to q,. ) These two angles are related by 

sin a1 = sin e(p40 - ~~“)““/[(~uI + p~o)~ - SY2, (35) 

where the positive determination of the square roots must be taken. The sine 
theorem (2) applied to triangle OCpl , Fig. 4a, yields the relation 

sin ~1 = sin al 2rnl [(pm + q1d2 - sY2 
Sl 

7 (36) 

and again the positive determination of the square roots is to be taken. Conse- 
quently, 

sin x1 = sin 0 2ml(q;o - /.z2 
Sl 

; 

since the continuations of S1 and (9% - P’)I’~ have already been specified, Eq. 
(37) allows us to express the continuation of sin x1 unambiguously in terms of 
sin 8. Clearly, sin x2 can be continued in the same way. This completes the con- 
tinuation of Eq. (20) and provides the relation between Grh(a, t) and F,,x(s, t). 

Let us first apply these results to the TN problem. At the end of the continua- 
tion we have 

cos Xl = -cos x2 = - 
(s + m2 - p2) (t/4)“’ = 2E(p - q cos 0) 

#(t/4 - m2P2 s ’ 

sin x1 = sin x2 = 
2mq sin e 

s . 

Equation (20) is then 

G,A(s, t) = p~,d:!:(~ - xl) d:!i(xJ( -I)“‘-“‘F,&, t), 

Or 

G ++ = sin x2’++ + cos x9+-, G+ = cos x,F++ - sin xlF 

which agrees with Eq. ( 11) . 

(i39) 

7 (40) +- 

The formulas are readily generalized to the case where all four particles have 
spin. For notational convenience, we continue to write the formulas as if a baryon 
of mass ml and spin s1 is crossed with a meson of mass ~2 and spin (r2 . These are 
easily translated to other cases. The relation between the helicity amplitude is 
(baryon indices P, X, meson indices a, a) : 

(38) 
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G,ma(s, t> 

where 

cos Xl = 
-(s +m12 - /.u’) (t + ml2 - m2”) - 2rn1~(rn2~ - ml2 + p12 - p22) 

2p z/i & 
7 

cosx2 = cs+ 
m22 - ~2~) (t + m22 - m12> - 2m22( m22 - ml2 + p12 - p22) 

2pvL92 

cos#l Js + m2 - m2> (t + lr12 - 12~) - 2b4cc12(m22 - ml2 + jh2 - p22) 
’ (42) 

2q 4 Sl 
2 

cos~2 = -b+pLz2- m2”> (t + 142~ - ~1’) - 2p2Ym22 - ml2 + PI’ - ~2~) 

2qdzs2 
3 

and 
sin x1 = 2mlq sin 0/s, , sin Ij/l = 2~,p sin B/S1 , (43) 
sin x2 = 2m2q sin e/S2 , sin ti2 = 2pzp sin e/s2 , 

with 

p = [t” - 2t(m12 + m22) + (ml2 - m22)2]“2/22/i, 

q = [t” - 2t(W2 + d) + (CL12 - P22)211’2/2&. 

The quantity 1 depends on which particles are defined as “particle 2” in G and F. 
(See the discussion following Eqs. (2) and (31).) Suppose that in G the mesons 
are taken to be “particle 2”. The value of 7 for the various possible choices in 
the definition of F are tabulated below: 

“particle 2” $ 

~2 > Q2 xf - p’ + al - p’ 
P2 , Ql x’ - p’ 
Pl , 41 0 
PI , Q2 a’ - p’. 

Perhaps the easiest convention to remember is that 7 = 0 if an uncrossed particle 
is “particle 1” in both G and F while a crossed particle changes from “particle 1” 
to “particle 2” and vice versa. 

APPENDIX 

A short explanation of the expression for cos (&/2), Eq. (lo), is given. First 
note that from (5) and (8) 
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cos (0,/Z) = f2iPq sin 0/S, (A-1) 

Or 

sin f3, = f4iPp( -~1)l’~ sin B/X2, (A.2) 

for an arbitrary point on the path of continuation. Consider the invariant 
quantity 

90 QlZ 41Z 

@ = p10 p1, p1, . 

P20 p2z p2z , 

We evaluate + in the initial configuration in the center of mass of pl , q1 , con- 
t,inue the expression to the final configuration, and evaluate in the center of mass 
of P, , p2 . Initially, 

* = dS(PlZP2Z - p,,p,,) = - S2 sin e8/42/S; (A.4) 

finally 

Q, = -l/i(Q1,P1, - Pl,Ql,) = -2Epq sin 8, (A.5) 

or 
sin 0, = 8E pq& sin 0/S” 

= -4ipq( -st)l” sin e/s”, (A.61 

and hence one must take the minus sign in (A.1). Note that this relation is inde- 
pendent of which way the path of continuation circles us = (m2 - p2)2; in fact, 
the path of Fig. 1 and the condition that sin 8, > 0 initially require sin 0 < 0 
in the final configuration. 
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